If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+100x-1200=0
a = 5; b = 100; c = -1200;
Δ = b2-4ac
Δ = 1002-4·5·(-1200)
Δ = 34000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{34000}=\sqrt{400*85}=\sqrt{400}*\sqrt{85}=20\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-20\sqrt{85}}{2*5}=\frac{-100-20\sqrt{85}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+20\sqrt{85}}{2*5}=\frac{-100+20\sqrt{85}}{10} $
| 3(4x+1)=-27 | | 16r+39/5=-5 | | 44=r*22 | | (x*x+9)(x*x+4)(3*3*3*3+4)=0 | | (x²+9)(x²+4)(3x3x3x3+4)=0 | | 48.6x=777.6 | | 3-5(5t-18)=-82 | | 5(2x+10)=180 | | 9(x+8)=9x-8 | | 75=4^x | | 1/4(y+6)+5=1/3(4y-1)-17 | | -12s+1=-18s-20 | | x–0.025x=341.25 | | -3(4s-1)-3=-2(9s+9)-2 | | t/8=20 | | 11=4x+31 | | 6x+12=2(x+6) | | 4(x-3)-2(x+1)=2 | | 9/10v+6=11 | | (x^2-2x)^2-(x-1)^2=55 | | 9x-x-5x=6*5 | | x+640=x=3595 | | 3.53d=14+3.549d | | 7x-18=5x6 | | 3(3t-4)-2=30 | | 4x/5-3/10=8x/2+4/10 | | 5/4y+22=27 | | 11+x/8=18 | | 32=23-5r | | 5(m+19)=75 | | 2p+11=5p-10 | | (-3x2+3x–7)–(9x3+5x2–7)=x |